
© 2019 Mellanox Technologies 11

Maxim Mikityanskiy
June 2019

AF_XDP: potential 
to improve



© 2019 Mellanox Technologies 22

Queues



© 2019 Mellanox Technologies 33

XSK RX queue

▪ XSK RX queue != regular RX queue

Regular RX queue XSK RX queue

Memory model Dynamic allocation Allocation from UMEM

XSK RX Extra copy Zero-copy

XDP_DROP Fast Fast

XDP_PASS Build XSK in place Extra copy*

XDP_TX Page reuse Extra copy*

XDP_REDIRECT Page reuse Extra copy

*Can be potentially improved.

Incoming traffic Steering rules XSK RX queues XDP program
AF_XDP socket

Stack



© 2019 Mellanox Technologies 44

XSK RX queue allocation scheme

▪Replacing regular RX queues by XSK ones – disadvantages:
▪Same index range – no way to distinguish.
▪Opening an XSK breaks the regular traffic flow because of RSS.
▪RSS management is not easy.
▪Opening an XSK requires restarting a channel.

▪XSK RX queues should be a separate queue type.
▪Own numeration.
▪Opening dedicated XSK RX queues in existing channels.
▪Allocating additional XSK RX queues.

▪XSK RX queues are to be registered in the kernel.
▪Attach UMEM.
▪More on this later.



© 2019 Mellanox Technologies 55

Queues or channels?
▪XSK is both RX and TX, but it has only a single queue index.
▪libbpf’s xsk_get_max_queues() queries the number of combined channels.
▪ It doesn’t correspond to what the kernel does.

▪Everything looks like it’s designed to be used with combined channels, but 
instead the netdev queues are used, and they don’t fit well.

▪There is a relation between RQ #X and SQ #X, so the abstraction of a 
combined channel is natural.
▪Proposal: fix the terminology and switch to using channel ID instead of QID.

struct xdp_umem *xdp_get_umem_from_qid(struct net_device *dev,
u16 queue_id)

{
if (queue_id < dev->real_num_rx_queues)

return dev->_rx[queue_id].umem;
if (queue_id < dev->real_num_tx_queues)

return dev->_tx[queue_id].umem;

return NULL;
}



© 2019 Mellanox Technologies 66

The way to register XSKs in the kernel

▪A combined channel in the driver consists of:
▪Regular RQ and SQ.
▪XDP SQs.
▪XSK RQ and SQ created on demand. 

▪struct net_device will have an array of XSK QP structs.
▪UMEMs for non-zero-copy mode are to be stored in regular queues.
▪XSK QPs correspond to XSK RQ and SQ of a channel in the driver.
▪Unbound XSK QPs.
▪A suggestion in Magnus’s RFC: https://patchwork.ozlabs.org/cover/1094083/.
▪With an XSK QP as a separate entity, it’s easy to allocate new QPs on demand.
▪Dedicated NAPI.
▪Not bound to an IRQ.
▪Not bound to a channel.

https://patchwork.ozlabs.org/cover/1094083/


© 2019 Mellanox Technologies 77

Speeding up slow path



© 2019 Mellanox Technologies 88

Zero-copy XDP_TX and XDP_PASS

▪ Jonathan Lemon had a PoC patch that implements zero-copy XDP_TX.
▪The frame is put to the Reuse Ring once the TX completes.
▪The issue is that the Reuse Ring can overflow.

▪Keep UMEM frames in the driver – options:
▪Bigger Reuse Ring with a fallback to copy.
▪Return these frames to the Return Ring in the application.
▪Return to the Completion Ring – if the application supports.

▪XDP_PASS issue: userspace has write access to the UMEM, kernel parsers can be 
confused.



© 2019 Mellanox Technologies 99

Return Ring



© 2019 Mellanox Technologies 1010

Return Ring

▪Example use cases:
▪Return frames on shutdown.
▪Return frames which are not XDP_REDIRECTed to an XSKMAP.
▪Signal about the empty Fill Ring.

▪Descriptor:
▪Error code.
▪Frame handle.



© 2019 Mellanox Technologies 1111

Corner cases
▪Frames are owned by the driver, but the interface goes down.
▪Reuse Ring as a workaround: https://patchwork.ozlabs.org/patch/962914/#1982161.
▪TX frames are completed without transmission and error indication.
▪Lack of a common cleanup mechanism in the kernel.
▪Return Ring to solve the problems.

▪XDP program doesn’t return XDP_REDIRECT to an XSKMAP.
▪Recycle internally.
▪Lack of a standard way.
▪Reuse Ring can be used.
▪ Interferes with zero-copy XDP_TX.

▪Return Ring can be used.
▪XDP_PASS is faster. Is it a real use case?
▪A roundtrip through the userspace slows things down.

▪Use the Reuse Ring while possible; on shutdown flush to the Return Ring. 
▪An abstraction layer over the Reuse and Return Rings.
▪Provide a common algorithm to all drivers.

https://patchwork.ozlabs.org/patch/962914/#1982161


© 2019 Mellanox Technologies 1212

Corner cases

▪TX packet size > MTU.
▪No error reporting — a completion is simply issued.
▪AF_PACKET returns –EMSGSIZE.

▪Requires some manipulations to issue completions in order.
▪TX completes with an error.
▪Driver can try to recover transparently.
▪Is it driver’s responsibility?
▪Most likely, retrying will lead to the same error.

▪ If the recovery is impossible, tell the application.



© 2019 Mellanox Technologies 1313

Corner cases

▪XDP program increases the packet size over MTU. Should we pass it to 
AF_XDP?
▪Depends on the use case.
▪Application receives a packet bigger than MTU and tries to respond with a 

packet that big.
▪Application implements a custom stack, which drops oversized packets.

▪Suggestion: to drop oversized packets, unless they go to AF_XDP.



© 2019 Mellanox Technologies 1414

Lack of notification mechanism

▪Addressed by a recent series by Magnus: 
https://patchwork.ozlabs.org/cover/1115314/.
▪Busy-polling on RX
▪ If the application stops refilling the Fill Ring, NAPI busy polls.

▪Busy-polling on TX
▪The driver doesn’t guarantee that it consumes everything for transmission 

on sendto().
▪The application has to grind CPU with syscalls.

▪Unresolved issue?
▪xdpsock in poll mode can get stuck if the TX Ring is full, and nothing is sent 

on the only sendto() call.

https://patchwork.ozlabs.org/cover/1115314/


© 2019 Mellanox Technologies 1515

Configuration



© 2019 Mellanox Technologies 1616

Steering to XSK queues

▪API needs to be extended:
▪Allow to choose XSK/regular RX queue.
▪Allow to steer traffic to unbound XSKs.

▪Use tc flower instead of ethtool?



© 2019 Mellanox Technologies 1717

Non-ZC fallback

▪If XSK queue X is requested, but the driver is non-ZC, fall back to regular RX 
queue X.
▪Problematic with unbound XSK QPs.
▪Different steering configuration for ZC and non-ZC.
▪The driver can ignore is_xsk.

▪XDP program works differently in the compatibility mode.
▪The configuration can be passed through a BPF map.
▪Different programs can be loaded.



© 2019 Mellanox Technologies 1818

RSS for XSK queues

▪A real use case.
▪Mellanox hardware supports it.
▪Lack of software interface to configure it.
▪A rejected series by Edward Cree: https://patchwork.ozlabs.org/cover/878725/.
▪Reimplement it with tc flower?

https://patchwork.ozlabs.org/cover/878725/


© 2019 Mellanox Technologies 19

Thank You


